Publications by Year: 2010

J. K. Choe, Shapley, J. R., Strathmann, T. J., and Werth, C. J., “Influence of rhenium speciation on the stability and activity of Re/Pd bimetal catalysts used for perchlorate reduction,” Environmental Science & Technology , vol. 44, no. 12, pp. 4716–4721, 2010. Publisher's VersionAbstract
Recent work demonstrates reduction of aqueous perchlorate by hydrogen at ambient temperatures and pressures using a novel rhenium−palladium bimetal catalyst immobilized on activated carbon (Re/Pd-AC). This study examines the influence of Re speciation on catalyst activity and stability. Rates of perchlorate reduction are linearly dependent on Re content from 0−6 wt %, but no further increases are observed at higher Re contents. Surface-immobilized Re shows varying stability and speciation both in oxic versus H2-reducing environments and as a function of Re content. In oxic solutions, Re immobilization is dictated by sorption of the Re(VII) precursor, perrhenate (ReO4−), to activated carbon via electrostatic interactions. Under H2-reducing conditions, Re immobilization is significantly improved and leaching is minimized by ReO4− reduction to more reduced species on the catalyst surface. X-ray photoelectron spectroscopy shows two different Re binding energy states under H2-reducing conditions that correspond most closely to Re(V)/Re(IV) and Re(I) reference standards, respectively. The distribution of the two redox states varies with Re content, with the latter predominating at lower Re contents where catalyst activity is more strongly dependent on Re content. Results demonstrate that both lower Re contents and the maintenance of H2-reducing conditions are key elements in stabilizing the active Re surface species that are needed for sustained catalytic perchlorate treatment.
Y. Yang, Mahler, B. J., VanMetre, P. C., Ligouis, B., and Werth, C. J., “Potential contributions of asphalt and coal tar to black carbon quantification in urban dust, soils, and sediments,” Geochimica et Cosmochimica Acta, vol. 74, no. 23, pp. 6830–6840, 2010. Publisher's VersionAbstract
Measurements of black carbon (BC) using either chemical or thermal oxidation methods are generally thought to indicate the amount of char and/or soot present in a sample. In urban environments, however, asphalt and coal-tar particles worn from pavement are ubiquitous and, because of their pyrogenic origin, could contribute to measurements of BC. Here we explored the effect of the presence of asphalt and coal-tar particles on the quantification of BC in a range of urban environmental sample types, and evaluated biases in the different methods used for quantifying BC. Samples evaluated were pavement dust, residential and commercial area soils, lake sediments from a small urban watershed, and reference materials of asphalt and coal tar. Total BC was quantified using chemical treatment through acid dichromate (Cr2O7) oxidation and chemo-thermal oxidation at 375 °C (CTO-375). BC species, including soot and char/charcoal, asphalt, and coal tar, were quantified with organic petrographic analysis. Comparison of results by the two oxidation methods and organic petrography indicates that both coal tar and asphalt contribute to BC quantified by Cr2O7 oxidation, and that coal tar contributes to BC quantified by CTO-375. These results are supported by treatment of asphalt and coal-tar reference samples with Cr2O7 oxidation and CTO-375. The reference asphalt is resistant to Cr2O7 oxidation but not to CTO-375, and the reference coal tar is resistant to both Cr2O7 oxidation and CTO-375. These results indicate that coal tar and/or asphalt can contribute to BC measurements in samples from urban areas using Cr2O7 oxidation or CTO-375, and caution is advised when interpreting BC measurements made with these methods.
C. Zhang, Dehoff, K., Hess, N., Oostrom, M., Wietsma, T. W., Valocchi, A. J., Fouke, B. W., and Werth, C. J., “Pore-scale study of transverse mixing induced CaCO3 precipitation and permeability reduction in a model subsurface sedimentary system,” Environmental Science & Technology, vol. 44, no. 20, pp. 7833–7838, 2010. Publisher's VersionAbstract
A microfluidic pore structure etched into a silicon wafer was used as a two-dimensional model subsurface sedimentary system (i.e., micromodel) to study mineral precipitation and permeability reduction relevant to groundwater remediation and geological carbon sequestration. Solutions containing CaCl2 and Na2CO3 at four different saturation states (Ω = [Ca2+][CO32−]/KspCaCO3) were introduced through two separate inlets, and they mixed by diffusion transverse to the main flow direction along the center of the micromodel resulting in CaCO3 precipitation. Precipitation rates increased and the total amount of precipitates decreased with increasing saturation state, and only vaterite and calcite crystals were formed (no aragonite). The relative amount of vaterite increased from 80% at the lowest saturation state (Ωv = 2.8 for vaterite) to 95% at the highest saturation state (Ωv = 4.5). Fluorescent tracer tests conducted before and after CaCO3 precipitation indicate that pore spaces were occluded by CaCO3 precipitates along the transverse mixing zone, thus substantially reducing porosity and permeability, and potentially limiting transformation from vaterite to the more stable calcite. The results suggest that mineral precipitation along plume margins can decrease both reactant mixing during groundwater remediation, and injection and storage efficiency during CO2 sequestration.
C. Zhang, Kang, Q., Wang, X., Zilles, J., Muller, R. H., and Werth, C. J., “Effects of pore-scale heterogeneity and transverse mixing on bacterial growth in porous media,” Environmental Science & Technology, vol. 44, no. 8, pp. 3085–3092, 2010. Publisher's VersionAbstract
Microbial degradation of contaminants in the subsurface requires the availability of nutrients; this is impacted by porous media heterogeneity and the degree of transverse mixing. Two types of microfluidic pore structures etched into silicon wafers (i.e., micromodels), (i) a homogeneous distribution of cylindrical posts and (ii) aggregates of large and small cylindrical posts, were used to evaluate the impact of heterogeneity on growth of a pure culture (Delftia acidovorans) that degrades (R)-2-(2,4-dichlorophenoxy)propionate (R-2,4-DP). Following inoculation, dissolved O2 and R-2,4-DP were introduced as two parallel streams that mixed transverse to the direction of flow. In the homogeneous micromodel, biomass growth was uniform in pore bodies along the center mixing line, while in the aggregate micromodel, preferential growth occurred between aggregates and slower less dense growth occurred throughout aggregates along the center mixing line. The homogeneous micromodel had more rapid growth overall (2 times) and more R-2,4-DP degradation (9.5%) than the aggregate pore structure (5.7%). Simulation results from a pore-scale reactive transport model indicate mass transfer limitations within aggregates along the center mixing line decreased overall reaction; hence, slower biomass growth rates relative to the homogeneous micromodel are expected. Results from this study contribute to a better understanding of the coupling between mass transfer, reaction rates, and biomass growth in complex porous media and suggest successful implementation and analysis of bioremediation systems requires knowledge of subsurface heterogeneity.
T. W. Willingham, Zhang, C., Werth, C. J., Valocchi, A. J., Oostrom, M., and Wietsma, T. W., “Using dispersivity values to quantify the effects of pore-scale flow focusing on enhanced reaction along a transverse mixing zone,” Advances in Water Resources, vol. 33, no. 4, pp. 525–535, 2010. Publisher's VersionAbstract
A key challenge for predictive modeling of transverse mixing and reaction of solutes in groundwater is to determine values of transverse dispersivity  in heterogeneous flow fields that accurately describe mixing and reaction at the pore scale. We evaluated the effects of flow focusing in high permeability zones on mixing enhancement using experimental micromodel flow cells and pore-scale lattice-Boltzmann-finite-volume model (LB-FVM) simulations. Micromodel results were directly compared to LB-FVM simulations using two different pore structures, and excellent agreement was obtained. Six different flow focusing pore structures were then systematically tested using LB-FVM, and both analytical solutions and a two-dimensional (2D) continuum-scale model were used to fit  values to pore-scale results. Pore-scale results indicate that the overall rate of mixing-limited reaction increased by up to 40% when flow focusing occurred, and it was greater in pore structures with longer flow focusing regions and greater porosity contrast. For each pore structure, values from analytical solutions of transverse concentration profiles or total product at a given longitudinal location showed good agreement for nonreactive and reactive solutes, and values determined in flow focusing zones were always smaller than those downgradient after the flow focusing zone. Transverse dispersivity values from the 2D continuum model were between values within and downgradient from the flow focusing zone determined from analytical solutions. Also, total product and transverse concentration profiles along the entire pore structure from the 2D continuum model matched pore scale results. These results indicate that accurate quantification of pore-scale flow focusing with transverse dispersion coefficients is possible only when the entire flow and concentration fields are considered.
C. J. Werth, Zhang, C., Brusseau, M., Oostrom, M., and Baumann, T., “A review of non-invasive imaging methods and applications in contaminant hydrogeology research,” Journal of Contaminant Hydrology, vol. 113, no. 1-4, pp. 1–24, 2010. Publisher's VersionAbstract
Contaminant hydrogeological processes occurring in porous media are typically not amenable to direct observation. As a result, indirect measurements (e.g., contaminant breakthrough at a fixed location) are often used to infer processes occurring at different scales, locations, or times. To overcome this limitation, non-invasive imaging methods are increasingly being used in contaminant hydrogeology research. Four of the most common methods, and the subjects of this review, are optical imaging using UV or visible light, dual-energy gamma radiation, X-ray microtomography, and magnetic resonance imaging (MRI). Non-invasive imaging techniques have provided valuable insights into a variety of complex systems and processes, including porous media characterization, multiphase fluid distribution, fluid flow, solute transport and mixing, colloidal transport and deposition, and reactions. In this paper we review the theory underlying these methods, applications of these methods to contaminant hydrogeology research, and methods' advantages and disadvantages. As expected, there is no perfect method or tool for non-invasive imaging. However, optical methods generally present the least expensive and easiest options for imaging fluid distribution, solute and fluid flow, colloid transport, and reactions in artificial two-dimensional (2D) porous media. Gamma radiation methods present the best opportunity for characterization of fluid distributions in 2D at the Darcy scale. X-ray methods present the highest resolution and flexibility for three-dimensional (3D) natural porous media characterization, and 3D characterization of fluid distributions in natural porous media. And MRI presents the best option for 3D characterization of fluid distribution, fluid flow, colloid transport, and reaction in artificial porous media. Obvious deficiencies ripe for method development are the ability to image transient processes such as fluid flow and colloid transport in natural porous media in three dimensions, the ability to image many reactions of environmental interest in artificial and natural porous media, and the ability to image selected processes over a range of scales in artificial and natural porous media.
Y. Yang, Metre, V. P., Mahler, B., Wilson, J., Ligouis, B., Razzaque, M., Schaeffer, D., and Werth, C. J., “Influence of coal-tar sealcoat and other carbonaceous materials on polycyclic aromatic hydrocarbon loading in an urban watershed,” Environmental Science & Technology, vol. 44, no. 4, pp. 1217–1223, 2010. Publisher's VersionAbstract
Carbonaceous material (CM) particles are the principal vectors transporting polycyclic aromatic hydrocarbons (PAHs) into urban waters via runoff; however, characteristics of CM particles in urban watersheds and their relative contributions to PAH contamination remain unclear. Our objectives were to identify the sources and distribution of CM particles in an urban watershed and to determine the types of CMs that were the dominant sources of PAHs in the lake and stream sediments. Samples of soils, parking lot and street dust, and streambed and lake sediment were collected from the Lake Como watershed in Fort Worth, Texas. Characteristics of CM particles determined by organic petrography and a significant correlation between PAH concentrations and organic carbon in coal tar, asphalt, and soot indicate that these three CM particle types are the major sources and carriers of PAHs in the watershed. Estimates of the distribution of PAHs in CM particles indicate that coal-tar pitch, used in some pavement sealcoats, is a dominant source of PAHs in the watershed, and contributes as much as 99% of the PAHs in sealed parking lot dust, 92% in unsealed parking lot dust, 88% in commercial area soil, 71% in streambed sediment, and 84% in surficial lake sediment.
D. Shuai, Chaplin, B. P., Shapley, J. R., Menendez, N. P., McCalman, D. C., Schneider, W. F., and Werth, C. J., “Enhancement of oxyanion and diatrizoate reduction kinetics using selected azo dyes on Pd-based catalysts,” Environmental Science & Technology, vol. 44, no. 5, pp. 1773–1779, 2010. Publisher's VersionAbstract
Azo dyes are widespread pollutants and potential cocontaminants for nitrate; we evaluated their effect on catalytic reduction of a suite of oxyanions, diatrizoate, and N-nitrosodimethylamine (NDMA). The azo dye methyl orange significantly enhanced (less than or equal to a factor of 5.24) the catalytic reduction kinetics of nitrate, nitrite, bromate, perchlorate, chlorate, and diatrizoate with several different Pd-based catalysts; NDMA reduction was not enhanced. Nitrate was selected as a probe contaminant, and a variety of azo dyes (methyl orange, methyl red, fast yellow AB, metanil yellow, acid orange 7, congo red, eriochrome black T, acid red 27, acid yellow 11, and acid yellow 17) were evaluated for their ability to enhance reduction. Hydrogenation energies of azo dyes were calculated using density functional theory and a volcano relationship between hydrogenation energies and reduction rate enhancement was observed. A kinetic model based on Brønsted−Evans−Polanyi (BEP) theory matched the volcano relationship and suggests sorbed azo dyes enhance reduction kinetics through hydrogen atom shuttling between reduced azo dyes (i.e., hydrazo dyes) and oxyanions or diatrizoate. This is the first research that has identified this synergetic effect, and it has implications for designing more efficient catalysts and reducing Pd costs in water treatment systems.