Publications by Year: 2008

H. Yoon, Zhang, C., Werth, C. J., Valocchi, A. J., and Webb, A. G., “Three dimensional characterization of water flow in heterogeneous porous media using magnetic resonance imaging,” Water Resour. Res., vol. 44, 2008.
S. Jeong, Wander, M. M., Kleineidam, S., Grathwohl, P., Ligouis, B., and Werth, C. J., “The role of condensed carbonaceous materials on the sorption of hydrophobic organic contaminants in subsurface sediments,” Environmental Science & Technology, vol. 42, no. 5, pp. 1458-1464, 2008. Publisher's VersionAbstract
The identification and characterization of carbonaceous materials (CMs) that control hydrophobic organic chemical (HOC) sorption is essential to predict the fate and transport of HOCs in soils and sediments. The objectives of this paper are to determine the types of CMs that control HOC sorption in the oxidized and reduced zones of a glacially deposited groundwater sediment in central Illinois, with a special emphasis on the roles of kerogen and black carbon. After collection, the sediments were treated to obtain fractions of the sediment samples enriched in different types of CMs (e.g., humic acid, kerogen, black carbon), and selected fractions were subject to quantitative petrographic analysis. The original sediments and their enrichment fractions were evaluated for their ability to sorb trichloroethene (TCE), a common groundwater pollutant. Isotherm results and mass fractions of CM enrichments were used to calculate sorption contributions of different CMs. The results indicate that CMs in the heavy fractions dominate sorption because of their greater mass. Black carbon mass fractions of total CMs in the reduced sediments were calculated and used to estimate the sorption contribution of these materials. Results indicate that in the reduced sediments, black carbon may sequester as much as 32% of the sorbed TCE mass, but that kerogen and humin are the dominant sorption environments. Organic carbon normalized sorption coefficients (KOC) were compared to literature values. Values for the central Illinois sediments are relatively large and in the range of values determined for materials high in kerogen and humin. This work demonstrates the advantage of using both sequential chemical treatment and petrographic analysis to analyze the sorption contributions of different CMs in natural soils and sediments, and the importance of sorption to natural geopolymers in groundwater sediments not impacted by anthropogenic sources of black carbon.
T. M. Willingham, Werth, C. J., and Valocchi, A. J., “Evaluation of the effects of porous media structure on mixing-controlled reactions using pore-scale modeling and micromodel experiments,” Environmental Science & Technoloty, vol. 42, no. 9, pp. 3185–3193, 2008. Publisher's VersionAbstract
The objectives of this work were to determine if a pore-scale model could accurately capture the physical and chemical processes that control transverse mixing and reaction in microfluidic pore structures (i.e., micromodels), and to directly evaluate the effects of porous media geometry on a transverse mixing-limited chemical reaction. We directly compare pore-scale numerical simulations using a lattice-Boltzmann finite volume model (LB-FVM) with micromodel experiments using identical pore structures and flow rates, and we examine the effects of grain size, grain orientation, and intraparticle porosity upon the extent of a fast bimolecular reaction. For both the micromodel experiments and LB-FVM simulations, two reactive substrates are introduced into a network of pores via two separate and parallel fluid streams. The substrates mix within the porous media transverse to flow and undergo instantaneous reaction. Results indicate that (i) the LB-FVM simulations accurately captured the physical and chemical process in the micromodel experiments, (ii) grain size alone is not sufficient to quantify mixing at the pore scale, (iii) interfacial contact area between reactive species plumes is a controlling factor for mixing and extent of chemical reaction, (iv) at steady state, mixing and chemical reaction can occur within aggregates due to interconnected intra-aggregate porosity, (v) grain orientation significantly affects mixing and extent of reaction, and (vi) flow focusing enhances transverse mixing by bringing stream lines which were initially distal into close proximity thereby enhancing transverse concentration gradients. This study suggests that subcontinuum effects can play an important role in the overall extent of mixing and reaction in groundwater, and hence may need to be considered when evaluating reactive transport.
C. Zhang, Werth, C. J., and Webb, A. G., “Investigation of surfactant-enhanced mass removal and flux reduction in 3D correlated permeability fields using magnetic resonance imaging,” Journal of Contaminant Hydrology, vol. 100, no. 3-4, pp. 116–126, 2008. Publisher's VersionAbstract
Magnetic resonance imaging (MRI) was used to visualize the NAPL source zone architecture before and after surfactant-enhanced NAPL dissolution in three-dimensional (3D) heterogeneously packed flowcells characterized by different longitudinal correlation lengths: 2.1 cm (aquifer 1) and 1.1 cm (aquifer 2). Surfactant flowpaths were determined by imaging the breakthrough of a paramagnetic tracer (MnCl2) analyzed by the method of moments. In both experimental aquifers, preferential flow occurred in high permeability materials with low NAPL saturations, and NAPL was preferentially removed from the top of the aquifers with low saturation. Alternate flushing with water and two surfactant pulses (5–6 pore volumes each) resulted in ∼ 63% of NAPL mass removal from both aquifers. However, overall reduction in mass flux (Mass Flux 1) exiting the flowcell was lower in aquifer 2 (68%) than in aquifer 1 (81%), and local effluent concentrations were found to increase by as high as 120 times at local sampling ports from aquifer 2 after surfactant flushing. 3D MRI images of NAPL revealed that NAPL migrated downward and created additional NAPL source zones in previously uncontaminated areas at the bottom of the aquifers. The additional NAPL source zones were created in the direction transverse to flow in aquifer 2, which explains the higher mass flux relative to aquifer 1. Analysis using a total trapping number indicates that mobilization of NAPL trapped in the two coarsest sand fractions is possible when saturation is below 0.5 and 0.4, respectively. Results from this study highlight the potential impacts of porous media heterogeneity and NAPL source zone architecture on advanced in-situ flushing technologies.
C. Zhang, Yoon, H., Werth, C. J., Valocchi, A. J., Basu, N. B., and Jawitz, J. W., “Evaluation of simplified mass transfer models to simulate the impacts of source zone architecture on nonaqueous phase liquid dissolution in heterogeneous porous media,” Journal of Contaminant Hydrology, vol. 102, no. 1-2, pp. 49–60, 2008. Publisher's VersionAbstract
Nonaqueous phase liquid (NAPL) dissolution was studied in three-dimensional (3D) heterogeneous experimental aquifers (25.5 cm × 9 cm × 8.5 cm) with two different longitudinal correlation lengths (2.1 cm and 1.1 cm) and initial spill volumes (22.5 ml and 10.5 ml). Spatial and temporal distributions of NAPL during dissolution were measured using magnetic resonance imaging (MRI). At high NAPL spill volume, average effluent concentrations initially increased during dissolution, as NAPL pools transitioned to NAPL ganglia, and then decreased as the total NAPL–water interfacial area decreased over time. Experimental results were used to test six dissolution models: (i and ii) a one-dimensional (1D) model using either specific NAPL–water interfacial area values estimated from MR images at each time step (i.e., 1D quasi-steady state model), or an empirical mass transfer (Sh′) correlation (i.e., 1D transient model), (iii and iv) a multiple analytical source superposition technique (MASST) using either the NAPL distribution determined from MR images at each time step (i.e., MASST steady state model), or the NAPL distribution determined from mass balance calculations (i.e., MASST transient model), (v) an equilibrium streamtube model, and (vi) a 3D grid-scale pool dissolution model (PDM) with a dispersive mass flux term. The 1D quasi-steady state model and 3D PDM captured effluent concentration values most closely, including some concentration fluctuations due to changes in the extent of flow reduction. The 1D transient, MASST steady state and transient, and streamtube models all showed a monotonic decrease in effluent concentration values over time, and the streamtube model was the most computationally efficient. Changes during dissolution of the effective NAPL–water interfacial area estimated from imaging data are similar to changes in effluent concentration values. The 1D steady state model incorporates estimates of the effective NAPL–water interfacial area directly at each time point; the 3D PDM does so indirectly through mass balance and a relative permeability function, which causes reduced water flow through high saturation NAPL regions. Hence, when model accuracy is required, the results indicate that a surrogate of this effective interfacial area is required. Approaches to include this surrogate in the MASST and streamtube models are recommended.
H. Yoon, Werth, C. J., Valocchi, A. J., and Oostron, M., “Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction,” Journal of Contaminant Hydrology, vol. 100, no. 1-2, pp. 58–71, 2008. Publisher's VersionAbstract
An existing multiphase flow simulator was modified in order to determine the effects of four mechanisms on NAPL mass removal in a strongly layered heterogeneous vadose zone during soil vapor extraction (SVE): a) NAPL flow, b) diffusion and dispersion from low permeability zones, c) slow desorption from sediment grains, and d) rate-limited dissolution of trapped NAPL. The impacts of water and NAPL saturation distribution, NAPL-type (i.e., free, residual, or trapped) distribution, and spatial heterogeneity of the permeability field on these mechanisms were evaluated. Two different initial source zone architectures (one with and one without trapped NAPL) were considered and these architectures were used to evaluate seven different SVE scenarios. For all runs, slow diffusion from low permeability zones that gas flow bypassed was a dominant factor for diminished SVE effectiveness at later times. This effect was more significant at high water saturation due to the decrease of gas-phase relative permeability. Transverse dispersion contributed to fast NAPL mass removal from the low permeability layer in both source zone architectures, but longitudinal dispersion did not affect overall mass removal time. Both slow desorption from sediment grains and rate-limited mass transfer from trapped NAPL only marginally affected removal times. However, mass transfer from trapped NAPL did affect mass removal at later time, as well as the NAPL distribution. NAPL flow from low to high permeability zones contributed to faster mass removal from the low permeability layer, and this effect increased when water infiltration was eliminated. These simulations indicate that if trapped NAPL exists in heterogeneous porous media, mass transfer can be improved by delivering gas directly to zones with trapped NAPL and by lowering the water content, which increases the gas relative permeability and changes trapped NAPL to free NAPL.