Publications

2006
M. B. Wallace, Sullivan, D., Rustgi, A. K., Tunnell, J. W., Feld, M. S., and others,Advanced Imaging and Technology in Gastrointestinal Neoplasia,” Gastroenterology, vol. 130, pp. 1333–1342, 2006.
2004
B. M. Pikkula, Tunnell, J. W., Chang, D. W., and Anvari, B., “Effects of droplet velocity, diameter, and film height on heat removal during cryogen spray cooling.,” Ann Biomed Eng, vol. 32, no. 8, pp. 1131-40, 2004.Abstract
Cryogen spray cooling (CSC) is an effective method to reduce or eliminate epidermal damage during laser treatment of various dermatoses. This study sought to determine the effects of specific cryogen properties on heat removal. Heat removal was quantified using an algorithm that solved an inverse heat conduction problem from internal temperature measurements made within a skin phantom. A nondimensional parameter, the Weber number, characterized the combined effects of droplet velocity, diameter, and surface tension. CSC experiments with laser irradiation were conducted on ex vivo human skin samples to assess the effect of Weber number on epidermal protection. An empirical relationship between heat removal and the difference in droplet temperature and the substrate, droplet velocity, and diameter was obtained. Histological sections of irradiated ex vivo human skin demonstrated that sprays with higher Weber numbers increased epidermal protection. Results indicate that the cryogen film acts as an impediment to heat transfer between the impinging droplets and the substrate. This study offers the importance of Weber number in heat removal and epidermal protection.
2003
B. M. Pikkula, Tunnell, J. W., and Anvari, B., “Methodology for characterizing heat removal mechanism in human skin during cryogen spray cooling.,” Ann Biomed Eng, vol. 31, no. 5, pp. 493-504, 2003.Abstract
Cryogen spray cooling (CSC) reduces epidermal damage during laser treatment of various dermatoses. The goal of this study was to determine the heat removal mechanism in skin and quantify the amount in response to CSC. Thermocouples were imbedded in four model substrates with a range of thermal diffusivities, greater than three orders of magnitude in difference, to measure the temperature profiles in response to CSC and sapphire contact cooling, which removes heat completely by conduction. An algorithm solving an inverse heat conduction problem was subsequently used to quantify the amount of heat removal from the substrates using the measured temperatures. The interface thermal conductance and internal temperatures within the substrates were computed by a finite difference algorithm that solved the heat conduction equation. Results verify a marked increase in heat removal and interface thermal conductance with increasing thermal diffusivity. By estimation from the model substrate results, heat removal and interface thermal conductance values for skin were obtained. Data demonstrate that during CSC, evaporation is the dominant heat transfer mechanism in materials with higher thermal diffusivities; however, conductive cooling dominates in substrates with lower thermal diffusivities such as skin.
J. W. Tunnell, Wang, L. V., and Anvari, B., “Optimum pulse duration and radiant exposure for vascular laser therapy of dark port-wine skin: a theoretical study.,” Appl Opt, vol. 42, no. 7, pp. 1367-78, 2003.Abstract
Laser therapy for cutaneous hypervascular malformations such as port-wine stain birthmarks is currently not feasible for dark-skinned individuals. We study the effects of pulse duration, radiant exposure, and cryogen spray cooling (CSC) on the thermal response of skin, using a Monte Carlo based optical-thermal model. Thermal injury to the epidermis decreases with increasing pulse duration during irradiation at a constant radiant exposure; however, maintaining vascular injury requires that the radiant exposure also increase. At short pulse durations, only a minimal increase in radiant exposure is necessary for a therapeutic effect to be achieved because thermal diffusion from the vessels is minimal. However, at longer pulse durations the radiant exposure must be greatly increased. There exists an optimum pulse duration at which minimal damage to the epidermis and significant injury within the targeted vasculature occur. For example, the model predicts optimum pulse durations of approximately 1.5, 6, and 20 ms for vessel diameters of 40, 80, and 120 microm, respectively. Optimization of laser pulse duration and radiant exposure in combination with CSC may offer a means to treat cutaneous lesions in dark-skinned individuals.
J. W. Tunnell, Chang, D. W., Johnston, C., Torres, J. H., Patrick, C. W., Miller, M. J., Thomsen, S. L., and Anvari, B., “Effects of cryogen spray cooling and high radiant exposures on selective vascular injury during laser irradiation of human skin.,” Arch Dermatol, vol. 139, no. 6, pp. 743-50, 2003.Abstract
BACKGROUND: Increasing radiant exposure offers a means to increase treatment efficacy during laser-mediated treatment of vascular lesions, such as port-wine stains; however, excessive radiant exposure decreases selective vascular injury due to increased heat generation within the epidermis and collateral damage to perivascular collagen. OBJECTIVE: To determine if cryogen spray cooling could be used to maintain selective vascular injury (ie, prevent epidermal and perivascular collagen damage) when using high radiant exposures (16-30 J/cm2). DESIGN: Observational study. SETTING: Academic hospital and research laboratory. PATIENTS: Twenty women with normal abdominal skin (skin phototypes I-VI). INTERVENTIONS: Skin was irradiated with a pulsed dye laser (wavelength = 585 nm; pulse duration = 1.5 milliseconds; 5-mm-diameter spot) using various radiant exposures (8-30 J/cm2) without and with cryogen spray cooling (50- to 300-millisecond cryogen spurts). MAIN OUTCOME MEASURE: Hematoxylin-eosin-stained histologic sections from each irradiated site were examined for the degree of epidermal damage, maximum depth of red blood cell coagulation, and percentage of vessels containing perivascular collagen coagulation. RESULTS: Long cryogen spurt durations (>200 milliseconds) protected the epidermis in light-skinned individuals (skin phototypes I-IV) at the highest radiant exposure (30 J/cm2); however, epidermal protection could not be achieved in dark-skinned individuals (skin phototypes V-VI) even at the lowest radiant exposure (8 J/cm2). The red blood cell coagulation depth increased with increasing radiant exposure (to >2.5 mm for skin phototypes I-IV and to approximately 1.2 mm for skin phototypes V-VI). In addition, long cryogen spurt durations (>200 milliseconds) prevented perivascular collagen coagulation in all skin types. CONCLUSIONS: Cryogen spurt durations much longer than those currently used in therapy (>200 milliseconds) may be clinically useful for protecting the epidermis and perivascular tissues when using high radiant exposures during cutaneous laser therapies. Additional studies are necessary to prove clinical safety of these protocols.
J. W. Tunnell, Desjardins, A. E., Galindo, L., Georgakoudi, I., McGee, S. A., Mirkovic, J., Mueller, M. G., Nazemi, J., Nguyen, F. T., Wax, A., Zhang, Q., Dasari, R. R., and Feld, M. S., “Instrumentation for multi-modal spectroscopic diagnosis of epithelial dysplasia.,” Technol Cancer Res Treat, vol. 2, no. 6, pp. 505-14, 2003.Abstract
Reflectance and fluorescence spectroscopies have shown great promise for early detection of epithelial dysplasia. We have developed a clinical reflectance spectrofluorimeter for multimodal spectroscopic diagnosis of epithelial dysplasia. This clinical instrument, the FastEEM, collects white light reflectance and fluorescence excitation-emission matrices (EEM's) within a fraction of a second. In this paper we describe the FastEEM instrumentation, designed for collection of multi-modal spectroscopic data. We illustrate its performance using tissue phantoms with well defined optical properties and biochemicals of known fluorescence properties. In addition, we discuss our plans to develop a system that combines a multi-spectral imaging device for wide area surveillance with this contact probe device.
T. Dai, Pikkula, B. M., Tunnell, J. W., Chang, D. W., and Anvari, B., “Thermal response of human skin epidermis to 595-nm laser irradiation at high incident dosages and long pulse durations in conjunction with cryogen spray cooling: an ex-vivo study.,” Lasers Surg Med, vol. 33, no. 1, pp. 16-24, 2003.Abstract
BACKGROUND AND OBJECTIVES: Improved laser treatment of cutaneous hypervascular lesions is expected by utilizing higher incident dosages, longer pulse durations and longer wavelengths than those currently used in clinical settings. However, simply increasing the incident dosage will also increase the risk of nonspecific thermal injury to the epidermis due to light absorption by melanin. In this study, we investigated the thermal response of human skin epidermis to 595-nm wavelength laser irradiation at high incident dosages (up to 20 J/cm(2)) and long pulse durations (up to 40 milliseconds) in conjunction with cryogen spray cooling (CSC) using ex-vivo human skin samples. STUDY DESIGN/MATERIALS AND METHODS: The Candela V-beam trade mark laser (595-nm wavelength) was used in the experiments. Ex-vivo human skin samples (Fitzpatrick types I-VI) were irradiated at the incident dosages D(0) = 4, 6, 10, 15, and 20 J/cm(2), laser pulse durations tau(laser) = 1.5, 10, and 40 milliseconds, without and with CSC (refrigerant-134A, spurt duration tau(CSC) = 100 milliseconds). Thermal injury to the epidermis was evaluated by histological observations. RESULTS: Under the same incident dosage, longer pulse durations led to reduced thermal injury to the epidermis. Without CSC, no demonstrable thermal injury to the epidermis was observed in skin types I-II irradiated at the incident dosage as high as 15 J/cm(2), and in skin types III-IV at 10 J/cm(2). When CSC was applied, no evidence of thermal injury to the epidermis was present in skin types I-II even when irradiated at the maximum available incident dosage of the laser system (20 J/cm(2)). In skin types III-IV, no demonstrable thermal injury to the epidermis was observed when using incident dosage as high as 15 J/cm(2) in conjunction with CSC. In skin type VI, thermal injury to the epidermis could not be avoided even at the setting D(0) = 4 J/cm(2), tau(laser) = 40 milliseconds in conjunction with CSC. CONCLUSIONS: For a given incident dosage, longer pulse durations help reduce thermal injury to the epidermis. When a 100-millisecond cryogen spurt is applied, thermal injury to the epidermis can be prevented in ex-vivo skin types I-IV when irradiated at higher incident dosages (15-20 J/cm(2)) than those currently used in clinical settings. Further studies on optimizing the CSC parameters in conjunction with the laser irradiation parameters are needed to protect skin types V-VI from thermal injury to the epidermis.
J. W. Tunnell, Haka, A. S., McGee, S. A., Mirkovic, J., and Feld, M. S., “Diagnostic tissue spectroscopy and its applications to gastrointestinal endoscopy,” Tech Gastrointestinal Endo, vol. 5, pp. 65–73, 2003.
2002
J. W. Tunnell, Torres, J. H., and Anvari, B., “Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.,” Ann Biomed Eng, vol. 30, no. 1, pp. 19-33, 2002.Abstract
Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.
2001
J. H. Torres, Tunnell, J. W., Pikkula, B. M., and Anvari, B., “An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application.,” Lasers Surg Med, vol. 28, no. 5, pp. 477-86, 2001.Abstract
BACKGROUND AND OBJECTIVE: Cryogen spray cooling (CSC) is a method used to protect the epidermis from non-specific thermal injury that may occur as a result of various dermatological laser procedures. However, better understanding of cryogen deposition and skin thermal response to CSC is needed to optimize the technique. STUDY DESIGN/MATERIALS AND METHODS: Temperature measurements and video imaging were carried out on an epoxy phantom as well as human skin during CSC with and without simultaneous application of airflow which was intended to accelerate cryogen evaporation from the substrate surface. An inverse thermal conduction model was used to estimate heat flux and total heat removed. RESULTS: Lifetime of the cryogen film deposited on the surface of skin and epoxy phantom lasted several hundred milliseconds beyond the spurt, but could be reduced to the spurt duration by application of airflow. Values over 100 J/cm(3) were estimated for volumetric heat removed from the epidermis using CSC. CONCLUSIONS: "Film cooling" instead of "evaporative cooling" appears to be the dominant mode of CSC on skin. Estimated values of heat removed from the epidermis suggest that a cryogen spurt as long as 200 milliseconds is required to counteract heat generated by high laser fluences (e.g., in treatment of port wine stains) in patients with high concentration of epidermal melanin. Additional cooling beyond spurt termination can be avoided by simultaneous application of airflow, although it is unclear at the moment if avoiding the additional cooling would be beneficial in the actual clinical situation.
B. M. Pikkula, Torres, J. H., Tunnell, J. W., and Anvari, B., “Cryogen spray cooling: Effects of droplet size and spray density on heat removal.,” Lasers Surg Med, vol. 28, no. 2, pp. 103-12, 2001.Abstract
BACKGROUND AND OBJECTIVE: Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. STUDY DESIGN/MATERIALS AND METHODS: Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. RESULTS: A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. CONCLUSIONS: Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed.
2000
J. W. Tunnell, Nelson, J. S., Torres, J. H., and Anvari, B., “Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: an ex vivo study.,” Lasers Surg Med, vol. 27, no. 4, pp. 373-83, 2000.Abstract
BACKGROUND AND OBJECTIVE: Higher laser fluences than currently used in therapy (5-10 J/cm(2)) are expected to result in more effective treatment of port wine stain (PWS) birthmarks. However, higher incident fluences increase the risk of epidermal damage caused by absorption of light by melanin. Cryogen spray cooling offers an effective method to reduce epidermal injury during laser irradiation. The objective of this study was to determine whether high laser incident fluences (15-30 J/cm(2)) could be used while still protecting the epidermis in ex vivo human skin samples. STUDY DESIGN/MATERIALS AND METHODS: Non-PWS skin from a human cadaver was irradiated with a Candela ScleroPlus Laser (lambda = 585 nm; pulse duration = 1.5 msec) by using various incident fluences (8-30 J/cm(2)) without and with cryogen spray cooling (refrigerant R-134a; spurt durations: 40-250 msec). Assessment of epidermal damage was based on histologic analysis. RESULTS: Relatively short spurt durations (40-100 msec) protected the epidermis for laser incident fluences comparable to current therapeutic levels (8-10 J/cm(2)). However, longer spurt durations (100-250 msec) increased the fluence threshold for epidermal damage by a factor of three (up to 30 J/cm(2)) in these ex vivo samples. CONCLUSION: Results of this ex vivo study show that epidermal protection from high laser incident fluences can be achieved by increasing the cryogen spurt duration immediately before pulsed laser exposure.

Pages