Investigating the propagation of pre-steepened waveforms in the vicinity of a supersonic jet

ROMAIN FIVET1, The University of Texas at Austin, WOUTIjn J. BAARS2, The University of Melbourne, DAVID SILVA3, CHARLES E. TINNEY4, The University of Texas at Austin — Recent studies [Baars et al. 2013] on jet noise have shown that despite the presence of crackle, cumulative nonlinear effects are absent along the peak noise path of laboratory-scale jets. This study quantifies the influence pre-steepened waveforms have on the shock formation distance τ, an effective Goldberg number Λ, and the intensity of crackle. The pressure decay along the peak noise path (cylindrical/spherical) is a pre-requisite to this study since it greatly influences τ and Λ. The outward propagation of broadband, pre-steepened waveforms, are obtained by numerically applying the generalized Burgers equation. Meanwhile, a large-eddy-simulation of a Mach 1.74 heated supersonic jet is interrogated by way of an innovative wavelet filter [Grizzi & Camussi, JFM 2012] in order to isolate the acoustically relevant components of the flow and observe the decay of the OASPL along the peak noise path.

1PhD Student
2Post Doctoral Research Fellow
3Undergraduate Student
4Assistant Professor

\hspace{1cm}

Romain Fievet
fievetromain@gmail.com
The University of Texas at Austin

Prefer Oral Session
Prefer Poster Session

Date submitted: 02 Aug 2013