Publications by Type: Journal Article

2017
Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration
L. Luan, Wei, X., Zhao, Z., Siegel, J. J., Potnis, O., Tuppen, C. A., Lin, S., Kazmi, S., Fowler, R. A., Holloway, S., Dunn, A. K., Chitwood, R. A., and Xie, C., “Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration,” Science Advances, vol. 3, no. 2, pp. e1601966, 2017. Publisher's VersionAbstract
Implanted brain electrodes construct the only means to electrically interface with individual neurons in vivo, but their recording efficacy and biocompatibility pose limitations on scientific and clinical applications. We showed that nanoelectronic thread (NET) electrodes with subcellular dimensions, ultraflexibility, and cellular surgical footprints form reliable, glial scar–free neural integration. We demonstrated that NET electrodes reliably detected and tracked individual units for months; their impedance, noise level, single-unit recording yield, and the signal amplitude remained stable during long-term implantation. In vivo two-photon imaging and postmortem histological analysis revealed seamless, subcellular integration of NET probes with the local cellular and vasculature networks, featuring fully recovered capillaries with an intact blood-brain barrier and complete absence of chronic neuronal degradation and glial scar.
P. Jurney, Agarwal, R., Singh, V., Choi, D., Roy, K., Sreenivasan, S. V., and Shi, L., “Unique size and shape-dependent uptake behaviors of non-spherical nanoparticles by endothelial cells due to a shearing flow,” Journal of Controlled Release, vol. 245, pp. 170–176 , 2017. Publisher's Version
P. Jurney, Agarwal, R., Singh, V., Choi, D., Roy, K., Sreenivasan, S. V., and Shi, L., “Unique size and shape-dependent uptake behaviors of non-spherical nanoparticles by endothelial cells due to a shearing flow,” Journal of Controlled Release, vol. 245, pp. 170-176, 2017. DOIAbstract
The size and shape of nanoparticle (NP) drug carriers can potentially be manipulated to increase the drug delivery efficacy because of their effects on particle margination and interactions with various cells in vivo. It is found in this work that the presence of a physiologically relevant shearing flow rate results in very different size and shape-dependent uptake behavior of negatively charged, non-spherical polyethylene glycol (PEG) hydrogel NPs by endothelial cells (ECs) cultured in a microchannel compared to uptake of either identical NPs in static culture or spherical particles in a shear flow. In particular, larger rod- and disk-shaped PEG NPs show more uptake than smaller ones, opposite to the size effect observed for spherical particles in a flow. Moreover, the trend observed in this dynamic uptake experiment also differs from that reported for uptake of similar PEG NPs by ECs in a static culture, where the smaller disks were found to be uptaken the most. These differences suggest that the increasing rotational and tumbling motions of larger-size non-spherical NPs in the flow play a dominant role in NP margination and cell interaction, compared to Brownian motion, gravity, and cell membrane deformation energy. These findings suggest that the coupling between NP geometry and shear flow is an important factor that needs to be accounted for in the design of the size and shape of nanocarriers.
S. Ramos, Espinoza, D. N., and Torres-Verdín, C., “Use of shear-wave anisotropy to quantify the onset of stress-induced microfracturing,” Geophysics, vol. 82, no. 6, pp. MR201-MR212, 2017.
M. J. Ramos, Espinoza, N. D., Torres-Verd{\'ın, C., and Grover, T., “Use of S-wave anisotropy to quantify the onset of stress-induced microfracturingShear anisotropy and microfracturing,” Geophysics, vol. 82, pp. MR201–MR212, 2017.
2016
A. Canchero, Tinney, C. E., Murray, N., and Ruf, J. H., “Acoustic imaging of clustered rocket nozzles undergoing end-effects.,” AIAA Journal, vol. 54, no. 12, pp. 3778-3786, 2016.Abstract
A nonintrusive measure of the exhaust plume and immediate sound field produced by a cluster of two thrust optimized parabolic contour nozzles is studied during two steady-state conditions. The first condition is at a nozzle pressure ratio of 25, at which point the flow is in a restricted-shock separated state. The second condition is at a nozzle pressure ratio of 37 and is when the flow and internal shock pattern transition rapidly between free-shock separated flow and the end-effects regime. These end-effects regime pulsations produce significant vibroacoustic loads due to the intermittent breathing of the last trapped annular separation bubble with the ambient. The exhaust plumes and surrounding sound field are first visualized by way of retroreflective shadowgraphy. Radon transforms of the spatially resolved shadowgraphy images are then used to characterize the statistical behavior of the acoustic wave fronts that reside within the hydrodynamic periphery of the nozzle flow. The findings reveal quantitative evidence of the sources of most intense vibroacoustic loads during the end-effects regime of clustered rockets.
D. N. Espinoza, Vandamme, M., Dangla, P., Pereira, J. - M., and Vidal-Gilbert, S., “Adsorptive-mechanical properties of reconstituted granular coal: Experimental characterization and poromechanical modeling,” International Journal of Coal Geology, vol. 162, pp. 158-168, 2016. Publisher's Version
S. Kelly, Torres-Verdín, C., and Balhoff, M., “Anomalous liquid imbibition at the nanoscale: the critical role of interfacial deformations,” Nanoscale, vol. 8, no. 5, pp. 2751-2767, 2016.
S. Kelly, Torres-Verdín, C., and Balhoff, M., “Anomalous liquid imbibition at the nanoscale: the critical role of interfacial deformations.,” Nanoscale, vol. 8, no. 5, pp. 2751-2767, 2016.
H. Daigle, “Application of critical path analysis for permeability prediction in natural porous media,” Advances in Water Resources, vol. 96, pp. 43-54, 2016.
S. Kelly, El-Sobky, H., Torres-Verdín, C., and Balhoff, M., “Assessing the utility of FIB-SEM images for shale digital rock physics.,” Advances in Water Research, vol. 95, no. September, pp. 302-316, 2016.
S. Kelly, El-Sobky, H., Torres-Verdín, C., and Balhoff, M., “Assessing the utility of FIB-SEM images for shale digital rock physics,” Advances in Water Research, vol. 95, no. September, pp. 302-316, 2016.
Y. Sun, Aman, M., and Espinoza, D. N., “Assessment of mechanical rock alteration caused by CO 2–water mixtures using indentation and scratch experiments,” International Journal of Greenhouse Gas Control, vol. 45, pp. 9–17, 2016. Publisher's Version
G. Coloyan, Cultrara, N. D., Katre, A., Carrete, J., Heine, M., Ou, E., Kim, J., Jiang, S., Lindsay, L., Mingo, N., Broido, D., Heremans, J. P., Goldberger, J., and Shi, L., “Basal-plane thermal conductivity of nanocrystalline and amorphized thin germanane,” Applied Physics Letters, vol. 109, pp. 131907, 2016. Publisher's Version
C. Xu, Yang, Q., and Torres-Verdín, C., “Bayesian rock classification and petrophysical uncertainty characterization with fast well-log forward modeling in thin-bed reservoirs,” Interpretation, vol. 4, no. 2, pp. SF19-SF29, 2016.
C. Xu, Yang, Q., and Torres-Verdín, C., “Bayesian rock classification and petrophysical uncertainty characterization with fast well-log forward modeling in thin-bed reservoirs,” Interpretation, vol. 4, no. 2, pp. SF19-SF29, 2016.
D. R. Bell, Qi, R., Jing, Z., Xiang, J. Y., Mejias, C., Schnieders, M. J., Ponder, J. W., and Ren, P., “Calculating binding free energies of host–guest systems using the AMOEBA polarizable force field,” Physical Chemistry Chemical Physics, vol. 18, pp. 30261–30269, 2016.
C. Wang, Nguyen, P. H., Pham, K., Huynh, D., Le, T. - B. N., Wang, H., Ren, P., and Luo, R., “Calculating protein–ligand binding affinities with MMPBSA: Method and error analysis,” Journal of computational chemistry, vol. 37, pp. 2436–2446, 2016.
R. Fievet, Tinney, C. E., Baars, W. J., and Hamilton, M. F., “Coalescence in the sound field of a laboratory-scale supersonic jet,” AIAA Journal, DOI: 10.2514/1.J054252, vol. 54, no. 1, pp. 254-265, 2016.Abstract
The spatial evolution of acoustic waveforms produced by a laboratory-scale Mach 3 jet are investigated using both 1∕4 in. and 1∕8 in. pressure field microphones located along rays emanating from the postpotential core where the peak sound emission is found to occur. The measurements are acquired in a fully anechoic chamber, where ground or other large surface reflections are minimal. Various statistical metrics are examined along the peak emission path, where they are shown to undergo rapid changes within 2m from the source region. An experimentally validated wave-packet model is then used to confirm the location where the pressure amplitude along the peak emission path transitions from cylindrical to spherical decay. Various source amplitudes, provided by the wave-packet model, are then used to estimate shock formation distance and Gol’dberg numbers for diverging waves. The findings suggest that cumulative nonlinear distortion is likely to occur at laboratory scale near the jet flow, where the waveform amplitude decays cylindrically, but less likely to occur farther from the jet flow, where the waveform amplitude decays spherically. Direct inspection of the raw time series reveals how steepened waveforms are generated by rogue like waves that form from the constructive interference of waves from neighboring sources as opposed to classical cumulative nonlinear distortion.
B. Yang, Lesicko, J., Moy, A., Reichenberg, J., Sacks, M., and Tunnell, J. W., “Color structured light imaging of skin,” Journal of Biomedical Optics, vol. 21, pp. 050503, 2016. Publisher's VersionAbstract
Abstract.  We illustrate wide-field imaging of skin using a structured light (SL) approach that highlights the contrast from superficial tissue scattering. Setting the spatial frequency of the SL in a regime that limits the penetration depth effectively gates the image for photons that originate from the skin surface. Further, rendering the SL images in a color format provides an intuitive format for viewing skin pathologies. We demonstrate this approach in skin pathologies using a custom-built handheld SL imaging system.

Pages