Archival Journals Publications

2018
J. Chen, Hamann, D. M., Choi, D. S., Poudel, N., Shen, L., Shi, L., Johnson, D. C., and Cronin, S. B., “Enhanced Cross-plane Thermoelectric Transport of Rotationally-disordered SnSe2 via Se Vapor Annealing,” Nano Letters, vol. 18, no. 11, pp. 6876–6881, 2018. Publisher's Version
J. Chen, Kim, J., Poudel, N., Hou, B., Shen, L., Shi, H., Shi, L., and Cronin, S., “Enhanced thermoelectric efficiency in topological insulator Bi2Te3 nanoplates via atomic layer deposition-based surface passivation,” Applied Physics Letters, vol. 113, pp. 083904, 2018. Publisher's Version
F. Tian, Song, B., Chen, X., Ravichandran, N. K., Lv, Y., Chen, K., Sullivan, S., Kim, J., Zhou, Y., Liu, T. - H., Goni, M., Ding, Z., Sun, J., Gamage, G. A. G. U., Sun, H., Ziyaee, H., Huyan, S., Deng, L., Zhou, J., Schmidt, A. J., Chen, S., Chu, C. - W., Huang, P. Y., Broido, D., Shi, L., Chen, G., and Ren, Z., “Unusual high thermal conductivity in boron arsenide bulk crystals,” Science, vol. 361, pp. 582–585, 2018. Publisher's VersionAbstract
Conventional theory predicts that ultrahigh lattice thermal conductivity can only occur in crystals composed of strongly bonded light elements, and that it is limited by anharmonic three-phonon processes. We report experimental evidence that departs from these long-held criteria. We measured a local room-temperature thermal conductivity exceeding 1000 watts per meter-kelvin and an average bulk value reaching 900 watts per meter-kelvin in bulk boron arsenide (BAs) crystals, where boron and arsenic are light and heavy elements, respectively. The high values are consistent with a proposal for phonon-band engineering and can only be explained by higher-order phonon processes. These findings yield insight into the physics of heat conduction in solids and show BAs to be the only known semiconductor with ultrahigh thermal conductivity.
J. Xing, Chen, X., Zhou, Y., Culbertson, J. C., Freitas, J. A., Glaser, E. R., Zhou, J., Shi, L., and Ni, N., “Multimillimeter-sized cubic boron arsenide grown by chemical vapor transport via a tellurium tetraiodide transport agent,” Applied Physics Letters, vol. 112, pp. 261901, 2018. Publisher's Version
E. Fleming, Kholmanov, I., and Shi, L., “Enhanced specific surface and thermal conductivity in ultrathin graphite foams grown by chemical vapor deposition on sintered nickel powder templates,” Carbon, vol. 136, pp. 380-386, 2018. Publisher's Version
D. S. Choi, Poudel, N., Park, S., Akinwande, D., Cronin, S. B., Watanabe, K., Taniguchi, T., Yao, Z., and Shi, L., “Large Reduction of Hot Spot Temperature in Graphene Electronic Devices with Heat-Spreading Hexagonal Boron Nitride,” ACS Applied Materials & Interfaces, vol. 10 , pp. 11101–11107, 2018. Publisher's Version
J. Kim, Fleming, E., Zhou, Y., and Shi, L., “Comparison of four-probe thermal and thermoelectric transport measurements of thin films and nanostructures with microfabricated electro-thermal transducers,” Journal of Physics D: Applied Physics, vol. 51, pp. 103002, 2018. Publisher's Version
2017
K. S. Olsson, An, K., Ma, X., Sullivan, S., Venu, V., Tsoi, M., Zhou, J., Shi, L., and Li, X., “Temperature-dependent Brillouin light scattering spectra of magnons in yttrium iron garnet and permalloy,” Phys. Rev. B, vol. 96, pp. 024448, 2017. Publisher's Version
A. Weathers, Carrete, J., DeGrave, J. P., Higgins, J. M., Moore, A. L., Kim, J., Mingo, N., Jin, S., and Shi, L., “Glass-like thermal conductivity in nanostructures of a complex anisotropic crystal,” Phys. Rev. B, vol. 96, pp. 214202, 2017. Publisher's Version
X. Chen, Jarvis, K., Sullivan, S., Li, Y., Zhou, J., and Shi, L., “Effects of grain boundaries and defects on anisotropic magnon transport in textured Sr14Cu24O41,” Phys. Rev. B, vol. 95, pp. 144310, 2017. Publisher's Version
N. Poudel, Liang, S. - J., Choi, D., Hou, B., Shen, L., Shi, H., Ang, L. K., Shi, L., and Cronin, S., “Cross-plane Thermoelectric and Thermionic Transport across Au/h-BN/Graphene Heterostructures,” Scientific Reports, vol. 7, pp. 14148, 2017. Publisher's Version
J. Zhang, Jia, S., Kholmanov, I., Dong, L., Er, D., Chen, W., Guo, H., Jin, Z., Shenoy, V. B., Shi, L., and Lou, J., “Janus Monolayer Transition Metal Dichalcogenides,” ACS Nano, vol. 11, pp. 8192 , 2017. Publisher's Version
S. Sullivan, Vallabhaneni, A. K., Kholmanov, I., Ruan, X., Murthy, J., and Shi, L., “Optical generation and detection of local non-equilibrium phonons in suspended graphene,” Nano Letters, vol. 17, pp. 2049–2056 , 2017. Publisher's Version
D. Choi, Poudel, N., Cronin, S. B., and Shi, L., “Effects of basal-plane thermal conductivity and interface thermal conductance on the hot spot temperature in graphene electronic devices,” Applied Physics Letters, vol. 110, pp. 073104, 2017. Publisher's Version
Z. Li, Bauers, S. R., Poudel, N., Hamann, D., Wang, X., Choi, D. S., Esfarjani, K., Shi, L., Johnson, D. C., and Cronin, S. B., “Cross-Plane Seebeck Coefficient Measurement of Misfit Layered Compounds (SnSe)n(TiSe2)n (n = 1,3,4,5),” Nano Letters, vol. 17, pp. 1978–1986 , 2017. Publisher's Version
P. Jurney, Agarwal, R., Singh, V., Choi, D., Roy, K., Sreenivasan, S. V., and Shi, L., “Unique size and shape-dependent uptake behaviors of non-spherical nanoparticles by endothelial cells due to a shearing flow,” Journal of Controlled Release, vol. 245, pp. 170–176 , 2017. Publisher's Version
B. Smith, Vermeersch, B., Carrete, J., Ou, E., Kim, J., Mingo, N., Akinwande, D., and Shi, L., “Temperature and Thickness Dependences of the Anisotropic In-Plane Thermal Conductivity of Black Phosphorus,” Advanced Materials, vol. 29, pp. 1603756, 2017. Publisher's Version
2016
X. Chen, Bansal, D., Sullivan, S., Abernathy, D. L., Aczel, A. A., Zhou, J., Delaire, O., and Shi, L., “Weak coupling of pseudoacoustic phonons and magnon dynamics in the incommensurate spin-ladder compound Sr14Cu24O41,” Phys. Rev. B, vol. 94, pp. 134309, 2016. Publisher's Version
K. An, Olsson, K. S., Weathers, A., Sullivan, S., Chen, X., Li, X., Marshall, L. G., Ma, X., Klimovich, N., Zhou, J., Shi, L., and Li, X., “Magnons and Phonons Optically Driven out of Local Equilibrium in a Magnetic Insulator,” Phys. Rev. Lett., vol. 117, pp. 107202, 2016. Publisher's Version
L. Zhang, Chen, X., Tang, Y., Shi, L., Snyder, J. G., Goodenough, J. B., and Zhou, J., “Thermal stability of Mg2Si0.4Sn0.6 in inert gases and atomic-layer-deposited Al2O3 thin film as a protective coating,” J. Mater. Chem. A, vol. 4, pp. 17726-17731, 2016. Publisher's VersionAbstract
Mg2Si1-xSnx solid solutions are promising thermoelectric materials to be applied in vehicle waste-heat recovery. Their thermal stability issue, however, needs to be addressed before the materials can be applied in practical thermoelectric devices. In this work, we studied the crystal structure and chemical composition of Mg2Si1-xSnx in inert gas atmosphere up to 823 K. We found that the sample was oxidized even in high-purity inert gases. Although no obvious structural change has been found in the slightly oxidized sample, carrier concentration decreased significantly since oxidation creates Mg vacancies in the lattice. We demonstrated that an atomic-layer deposited Al2O3 coating can effectively protect Mg2Si1-xSnx from oxidation in inert gases and even in air. In addition, this Al2O3 thin film also provides in situ protection to the Sb-doped Mg2Si1-xSnx samples during the laser-flash measurement and therefore eliminates the measurement error that occurs in uncoated samples as a result of sample oxidation and graphite exfoliation issues.

Pages