Thermal Transport Mechanisms at Nanoscale Point Contacts

Citation:

L. Shi and Majumdar, A., “Thermal Transport Mechanisms at Nanoscale Point Contacts,” J. Heat Transfer, vol. 124, pp. 329–337, 2002.

Abstract:

We have experimentally investigated the heat transfer mechanisms at a 90610 nm diameter point contact between a sample and a probe tip of a scanning thermal microscope (SThM). For large heated regions on the sample, air conduction is the dominant tipsample heat transfer mechanism. For micro/nano devices with a submicron localized heated region, the air conduction contribution decreases, whereas conduction through the solid-solid contact and a liquid meniscus bridging the tip-sample junction become important, resulting in the sub-100 nm spatial resolution found in the SThM images. Using a one dimensional heat transfer model, we extracted from experimental data a liquid film thermal conductance of 6.761.5 nW/K. Solid-solid conduction increased linearly as contact force increased, with a contact conductance of 0.7660.38 W/m2-K-Pa, and saturated for contact forces larger than 38611 nN. This is most likely due to the elasticplastic contact between the sample and an asperity at the tip end. @DOI: 10.1115/1.1447939# Keywords: Contact Resistance,

Notes:

Link