Effects of Surface Band Bending and Scattering on Thermoelectric Transport in Suspended Bismuth Telluride Nanoplates

Citation:

M. T. Pettes, Maassen, J., Jo, I., Lundstrom, M., and Shi, L., “Effects of Surface Band Bending and Scattering on Thermoelectric Transport in Suspended Bismuth Telluride Nanoplates,” Nano Letters, vol. 13, no. 11, pp. 5316–5322, 2013.

Abstract:

A microdevice was used to measure the in-plane thermoelectric properties of suspended bismuth telluride nanoplates from 9 to 25 nm thick. The results reveal a suppressed Seebeck coefficient together with a general trend of decreasing electrical conductivity and thermal conductivity with decreasing thickness. While the electrical conductivity of the nanoplates is still within the range reported for bulk Bi2Te3, the total thermal conductivity for nanoplates less than 20 nm thick is well below the reported bulk range. These results are explained by the presence of surface band bending and diffuse surface scattering of electrons and phonons in the nanoplates, where pronounced n-type surface band bending can yield suppressed and even negative Seebeck coefficient in unintentionally p-type doped nanoplates.

Notes:

Link