Exploring beyond palladium: Catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications

Citation:

X. Chen, Huo, X., Liu, J., Wang, Y., Werth, C. J., and Strathmann, T. J., “Exploring beyond palladium: Catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications,” Chemical Engineering Journal, vol. 313, pp. 745-752, 2017.

Abstract:

For over two decades, Pd has been the primary hydrogenation metal studied for reductive catalytic water treatment applications. Herein, we report that alternative platinum group metals (Rh, Ru, Pt and Ir) can exhibit substantially higher activity, wider substrate selectivity and variable pH dependence in comparison to Pd. Cross comparison of multiple metals and oxyanion substrates provides new mechanistic insights into the heterogeneous reactions. Activity differences and pH effects mainly originate from the chemical nature of individual metals. Considering the advantages in performance and cost, results support renewed investigation of alternative hydrogenation metals to advance catalytic technologies for water purification and other environmental applications.

Notes:

Publisher's Version