The Sound-field Produced by Clustered Rockets During Startup

Citation:

C. E. Tinney, Canchero, A., Rojo, R., Mack, G., Murray, N. E., and Ruf, J. H., “The Sound-field Produced by Clustered Rockets During Startup,” Whither Turbulence and Dig Data for the 21st Century. Symposium held at the Institute dEtudes Scientifques de Cargese, Corsica, France, April 20-24, (Springer Hardbound Volume, DOI: 10.1007/978-3-319-41217-7), 2015.

Abstract:

The vibroacoustic loads produced by a cluster of two large area-ratio thrust optimized parabolic contour nozzles are studied over a range of pressure ratios encompassing free-shock separated flow, restricted shock separated flow and the end-effects-regime. The rocket plume is visualized using a retroreflective shadowgraphy system while an experimentally validated RANS model provides insight into the internal flow and shock structure patterns. Pressure loads that form on the base of the vehicle (behind the nozzles) are then measured using a eighth-inch microphone, as most of these loads are caused by high intensity sound waves produced by the rocket nozzle flow. The objective of the study is to provide a direct link between the sources of most intense vibro-acoustic loads that form during the ignition of high area ratio rocket nozzle clusters.

Notes: