Q. Cui, Ren, P., and Meuwly, M., Many-Body Effects and Electrostatics in Biomolecules. Pan Stanford, 2016. Publisher's Version
K. Emmert, Kopel, R., Sulzer, J., Brühl, A. B., Berman, B. D., Linden, D. E. J., Horovitz, S. G., Breimhorst, M., Caria, A., and Frank, S., “Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated?,” NeuroImage, vol. 124, pp. 806-812, 2016.
M. Nole, Daigle, H., Milliken, K. L., and Prodanović, M., “A method for estimating microporosity of fine‐grained sediments and sedimentary rocks via scanning electron microscope image analysis,” Sedimentology, vol. 63, no. 6, pp. 1507-1521, 2016.
L. Cui, Ma, K., Puerto, M., Abdala, A. A., Tanakov, I., Lu, L. J., Chen, Y., Elhag, A., Johnston, K. P., and Biswal, S. L., “Mobility of ethomeen C12 and carbon dioxide (CO 2) foam at high temperature/high salinity and in carbonate cores,” SPE Journal, 2016. Publisher's VersionAbstract
The low viscosity and density of carbon dioxide (CO2) usually result in the poor sweep efficiency in CO2-flooding processes, especially in heterogeneous formations. Foam is a promising method to control the mobility and thus reduce the CO2 bypass because of the gravity override and heterogeneity of formations. A switchable surfactant, Ethomeen C12, has been reported as an effective CO2-foaming agent in a sandpack with low adsorption on pure-carbonate minerals. Here, the low mobility of Ethomeen C12/CO2 foam at high temperature (120°C), high pressure (3,400 psi), and high salinity [22 wt% of total dissolved solids (TDS)] was demonstrated in Silurian dolomite cores and in a wide range of foam qualities. The influence of various parameters, including aqueous solubility, thermal and chemical stability, flow rate, foam quality, salinity, temperature, and minimum-pressure gradient (MPG), on CO2 foam was discussed. A local-equilibrium foam model, the dry-out foam model, was used to fit the experimental data for reservoir simulation
A. Qajar, Xue, Z., Worthen, A. J., Johnston, K. P., Huh, C., Bryant, S. L., and Prodanović, M., “Modeling fracture propagation and cleanup for dry nanoparticle-stabilized-foam fracturing fluids,” Journal of Petroleum Science and Engineering, vol. 146, pp. 210-221, 2016. Publisher's VersionAbstract
Nanoparticle (NP)-stabilized foams can be generated at extreme water-deficient conditions (with quality as high as 95–99%) and yet with apparent viscosities >100 cP. This makes them greatly appealing for hydraulic fracturing applications, where minimal water consumption and leak-off to the reservoir are desired. Initial assessment of propensities of these novel fluids for fracturing applications requires field scale simulations. However, conventional fracturing models are difficult to employ because they do not consider true foam hydrodynamics. We have developed a mathematical model to simulate the transport of NP-stabilized foams for hydraulic fracturing. The model combines fluid transport in reservoir matrix and fracture with rock mechanics equations and thus allows for considering the effects of foam on fracture dynamics. Gas and water flow with mechanistic accounting of foam generation and coalescence are simulated using population balance models. Transport of nanoparticles through porous media was simulated using single site filtration model. The equations are discretized using finite-difference scheme. Settari’s approach is used to embed fracture’s moving boundary with the matrix to accordingly update transmissibility. Model’s capabilities are verified with examples on fracture growth and fracture clean up processes to illustrate the benefits of using the NP-stabilized high quality foams. Fracture propagation was simulated for water, a conventional viscous fracpad and NP-stabilized foams of different qualities and textures. The simulations confirmed that larger foam viscosity generated wider fractures with smaller fracture half-length. In addition, fracture cleanup simulations show that fracturing fluid cleanup for foam based fracturing fluids could take the order of 10 days as opposed to that of viscous fracpad which could take up to 1000 days; demonstrating the advantage of using dry foams
B. Ghanbarian, Sahimi, M., and Daigle, H., “Modeling relative permeability of water in soil: Application of effective‐medium approximation and percolation theory,” Water Resources Research, vol. 52, no. 7, pp. 5025-5040, 2016.
D. Medellin, Ravi, V. R., and Torres-Verdín, C., “Multidimensional NMR inversion without Kronecker products: Multilinear inversion.,” Journal of Magnetic Resonance, vol. 269, no. August, pp. 24-35, 2016.
D. Medellin, Ravi, V. R., and Torres-Verdín, C., “Multidimensional NMR inversion without Kronecker products: Multilinear inversion,” Journal of Magnetic Resonance, vol. 269, no. August, pp. 24-35, 2016.
I. Kim, Worthen, A. J., Lotfollahi, M., Johnston, K. P., DiCarlo, D. A., and Huh, C., “Nanoparticle-Stabilized Emulsions for Improved Mobility Control for Adverse-mobility Waterflooding,” SPE Improved Oil Recovery Conference. Society of Petroleum Engineers, 2016. Publisher's VersionAbstract
The immense nanotechnology advances in other industries provided opportunities to rapidly develop various applications of nanoparticles in the oil and gas industry. In particular, nanoparticle has shown its capability to improve the emulsion stability by generating so-called Pickering emulsion, which is expected to improve EOR processes with better conformance control. Recent studies showed a significant synergy between nanoparticles and very low concentration of surfactant, in generating highly stable emulsions. This study's focus is to exploit the synergy's benefit in employing such emulsions for improved mobility control, especially under high-salinity conditions. Hydrophilic silica nanoparticles were employed to quantify the synergy of nanoparticle and surfactant in oil-in-brine emulsion formation. The nanoparticle and/or the selected surfactant in aqueous phase and decane were co-injected into a sandpack column to generate oil-in-brine emulsions. Four different surfactants (cationic, nonionic, zwitterionic, and anionic) were examined, and the emulsion stability was analyzed using microscope and rheometer. Strong and stable emulsions were successfully generated in the combinations of either cationic or nonionic surfactant with nanoparticles, while the nanoparticles and the surfactant by themselves were unable to generate stable emulsions. The synergy was most significant with the cationic surfactant, while the anionic surfactant was least effective, indicating the electrostatic interactions with surfactant and liquid/liquid interface as a decisive factor. With the zwitterionic surfactant, the synergy effect was not as great as the cationic surfactant. The synergy was greater with the nonionic surfactant than the zwitterionic surfactant, implying that the surfactant adsorption at oil-brine interface can be increased by hydrogen bonding between surfactant and nanoparticle when the electrostatic repulsion is no longer effective. In generating highly stable emulsions for improved control for adverse-mobility waterflooding in harsh-condition reservoirs, we show a procedure to find the optimum choice of surfactant and its concentration to effectively and efficiently generate the nanoparticle-stabilized emulsion exploiting their synergy. The findings in this study propose a way to maximize the beneficial use of nanoparticle-stabilized emulsions for EOR at minimum cost for nanoparticle and surfactant
N. Griffith, Ahmad, Y., Daigle, H., and Huh, C., “Nanoparticle-stabilized natural gas liquid-in-water emulsions for residual oil recovery,” SPE Improved Oil Recovery Conference. Society of Petroleum Engineers, 2016.
R. P. Forslund, Mefford, T. J., Hardin, W. G., Alexander, C. T., Johnston, K. P., and Stevenson, K. J., “Nanostructured LaNiO3 perovskite electrocatalyst for enhanced urea oxidation,” ACS Catalysis, vol. 6, no. 8, pp. 5044-5051, 2016. Publisher's VersionAbstract
Urea electrooxidation has attracted considerable interest as an alternative anodic reaction in the electrochemical generation of hydrogen due to both the lower electrochemical potential required to drive the reaction and also the possibility of eliminating a potentially harmful substance from wastewater during hydrogen fuel production. Nickel and nickel-containing oxides have shown activities comparable to those of precious-metal catalysts for the electrooxidation of urea in alkaline conditions. Herein, we investigate the use of nanostructured LaNiO3 perovskite supported on Vulcan carbon XC-72 as an electrocatalyst. This catalyst exhibits an exceptionally high mass activity of ca. 371 mA mgox–1 and specific activity of 2.25 A mg–1 cmox–2 for the electrooxidation of urea in 1 M KOH, demonstrating the potential applications of Ni-based perovskites for direct urea fuel cells and low-energy hydrogen production. While LaNiO3 is shown to be stable at low overpotentials, through in-depth mechanistic studies the catalyst surface was observed to restructure and there was apparent CO2 poisoning of the LaNiO3 upon extended cycling, a result that may be extended to other Ni-based systems.
N. D. Espinoza, Shovkun, I., Makni, O., and Lenoir, N., “Natural and induced fractures in coal cores imaged through X-ray computed microtomography—Impact on desorption time,” International Journal of Coal Geology, vol. 154, pp. 165–175, 2016.
E. Ortega and Torres-Verdín, C., “New analytical method to calculate matrix- and fluid-corrected total porosity in organic shale: SPE Reservoir Evaluation and Engineering,” SPE Reservoir Evaluation and Engineering, vol. 18, no. 4, pp. 609-623, 2016.
J. Liu, Han, M., Wu, D., Chen, X., Choe, J. K., Werth, C. J., and Strathmann, T. J., “A New Bioinspired Perchlorate Reduction Catalyst with Significantly Enhanced Stability via Rational Tuning of Rhenium Coordination Chemistry and Heterogeneous Reaction Pathway,” Environmental Science & Technology, vol. 50, no. 11, pp. 5874-5881, 2016. Publisher's VersionAbstract
Rapid reduction of aqueous ClO4– to Cl– by H2 has been realized by a heterogeneous Re(hoz)2–Pd/C catalyst integrating Re(O)(hoz)2Cl complex (hoz = oxazolinyl-phenolato bidentate ligand) and Pd nanoparticles on carbon support, but ClOx– intermediates formed during reactions with concentrated ClO4– promote irreversible Re complex decomposition and catalyst deactivation. The original catalyst design mimics the microbial ClO4– reductase, which integrates Mo(MGD)2 complex (MGD = molybdopterin guanine dinucleotide) for oxygen atom transfer (OAT). Perchlorate-reducing microorganisms employ a separate enzyme, chlorite dismutase, to prevent accumulation of the destructive ClO2– intermediate. The structural intricacy of MGD ligand and the two-enzyme mechanism for microbial ClO4– reduction inspired us to improve catalyst stability by rationally tuning Re ligand structure and adding a ClOx– scavenger. Two new Re complexes, Re(O)(htz)2Cl and Re(O)(hoz)(htz)Cl (htz = thiazolinyl-phenolato bidentate ligand), significantly mitigate Re complex decomposition by slightly lowering the OAT activity when immobilized in Pd/C. Further stability enhancement is then obtained by switching the nanoparticles from Pd to Rh, which exhibits high reactivity with ClOx– intermediates and thus prevents their deactivating reaction with the Re complex. Compared to Re(hoz)2–Pd/C, the new Re(hoz)(htz)–Rh/C catalyst exhibits similar ClO4– reduction activity but superior stability, evidenced by a decrease of Re leaching from 37% to 0.25% and stability of surface Re speciation following the treatment of a concentrated “challenge” solution containing 1000 ppm of ClO4–. This work demonstrates the pivotal roles of coordination chemistry control and tuning of individual catalyst components for achieving both high activity and stability in environmental catalyst applications.
M. Palavecino and Torres-Verdín, C., “New method of petrophysical rock classification based on MICP and grain-size distribution measurements (Expanded Abstract).,” Society of Petrophysicists and Well Log Analysts (SPWLA) 57th Ann. Logging Symposium. Reykjavik, Iceland, June 25-29., 2016.
M. Palavecino and Torres-Verdín, C., “New method of petrophysical rock classification based on MICP and grain-size distribution measurements (Expanded Abstract),” Society of Petrophysicists and Well Log Analysts (SPWLA) 57th Ann. Logging Symposium. Reykjavik, Iceland, June 25-29., 2016.
E. Maalouf and Torres-Verdín, C., “New physics-based method to efficiently mitigate noise in borehole sonic logs (Expanded Abstract).,” Society of Exploration Geophysicists (SEG) 86th Ann. Internat. Mtg. Dallas, TX, October 16-21., 2016.
E. Maalouf and Torres-Verdín, C., “New physics-based method to efficiently mitigate noise in borehole sonic logs (Expanded Abstract),” Society of Exploration Geophysicists (SEG) 86th Ann. Internat. Mtg. Dallas, TX, October 16-21, 2016.
J. A. Valdez and Tinney, C. E., “A new thrust stand for testing multi-stream and heat simulated supersonic nozzles.,” 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-1890. San Diego, California, USA, 2016.Abstract
The design, fabrication and calibration of a new thrust stand for conducting thrust andaeroacoustic measurements concurrently in a fully anechoic chamber is discussed. The new thrust stand employs the scale-force measurement technique and is designed to accommodate multi-stream nozzles (core and bypass flow streams). Each stream has a dedicated helium air mixture system thereby permitting a multitude of test conditions. The methodology for designing the thrust stand is described and uses a notch type flexure which demonstrates high repeatability over extended thrust ranges. Calibration is performed with elevated pressure inside the plenum to characterize the effect of increased pressure on the flexure performance. A further qualification of the thrust measurement accuracy is conducted using a small arsenal of nozzles comprising method of characteristics contours. Surveys of the far-field pressure are then conducted during various operating points along the startup curve of a Mach 1.71 rectangular supersonic nozzle.
K. Chen, Yogeesh, M. N., Huang, Y., Zhang, S., He, F., Meng, X., Fang, S., Sheehan, N., Tao, T. H., Bank, S. R., Lin, J. - F., Akinwande, D., Sutter, P., Lai, T., and Wang, Y., “Non-destructive measurement of photoexcited carrier transport in graphene with ultrafast grating imaging technique,” Carbon, vol. 107, pp. 233-239, 2016. Publisher's VersionAbstract
Graphene has great potential for fabrication of ultrafast opto-electronics, in which relaxation and transport of photoexcited carriers determine device performance. Even though ultrafast carrier relaxation in graphene has been studied vigorously, transport properties of photoexcited carriers in graphene are largely unknown. In this work, we utilize an ultrafast grating imaging technique to measure lifetime (τr), diffusion coefficient (D), diffusion length (L) and mobility (μ) of photoexcited carriers in mono- and multi-layer graphene non-invasively. In monolayer graphene, D∼10,000 cm2/s and μ∼120,000 cm2/V have been observed, both of which decrease drastically in multilayer graphene, indicating that the remarkable transport properties in monolayer graphene originate from its unique Dirac-Cone energy structure. Mobilities of photoexcited carriers measured here are several times larger than the Hall and Field-Effect mobilities reported in literature (<15,000 cm2/V), due to the high energy of photoexcited carriers. Our results indicate the importance of obtaining monolayer graphene to realize high-performance graphene devices, as well as the necessity to use transport properties of photoexcited carriers for predicting the performance of graphene-based opto-electronics.
PDF icon PDF