Publications by Type: Journal Article

T. Bui-Thanh, “FEM-Based Discretization-Invariant MCMC Methods for PDE-constrained Bayesian Inverse Problems,” Submitted.
S. V. Dhulipala, Bhandari, S., and Hildebrandt Ruiz, L., “Formation of oxidized organic compounds from Cl-initiated oxidation of toluene,” Atmospheric Environment, Submitted.
T. Bui-Thanh, “From Rankine-Hugoniot Condition to a Constructive Derivation of HDG Methods,” Lecture Notes in Computational Science and Engineering, Submitted.
A. I. Z. Jarrah, Bard, J. F., and deSilva, A. H., “A Heuristic for Machine Scheduling at General Mail Facilities (1992),” European Journal of Operational Research, vol. 63, Submitted.
T. Bui-Thanh, “Hybridized Discontinuous Galerkin Methods for Linearized Shallow Water Equations,” Submitted.
R. E. F. E. R. E. E. D. J. O. U. R. N. A. L. A. R. T. I. C. L. E. S. Boden, D., M. N., D., L., and Borrego, M., “(in press),” Leave your discipline at the door: {Matching} expectations for interdisciplinary collaboration among faculty members. {Higher} {Education} in {Review}, vol. 11., Submitted.
M. Alley, Schreiber, M., Diesel, E., Ramsdell, K., and Borrego, M., “

(2007) Increased student learning and attendance in resources geology through the combination of sentence-headline slides and active learning measures.

,” Journal of Geoscience Education, vol. 55, pp. 85–91, Submitted.
T. Bui-Thanh and Myers, A., “A Randomized Misfit Approach for Data Reduction in Large-Scale Inverse Problems,” SIAM Special Edition, Submitted.
Y. Deng and Bard, J. F., “A Reactive GRASP with Path Relinking for Capacitated Clustering,” Journal of Heuristics, vol. 17, pp. 119–152, Submitted.
A. I. Z. Jarrah, Bard, J. F., and deSilva, A. H., “Solving Large-Scale Tour Scheduling Problems (1994),” Management Science, vol. 40, pp. 1124–1144, Submitted.
J. F. Bard, Binici, C., and deSilva, A. H., “Staff Scheduling at the United States Postal Service. ,” Computers & Operations Research, vol. 30, pp. 745–771, Submitted.
In Press
H. Daigle and Dugan, B., “Data report: permeability, consolidation, stress state, and pore system characteristics of sediments from Sites C0011, C0012, and C0018 of the Nankai accretionary complex,” Proceedings of the Integrated Ocean Drilling Program, Scientific Reports, In Press.
In Press, 2019
E. Bakolas, “Dynamic Output Feedback Control of the Liouville Equation
for Discrete-Time SISO Linear Systems
,” IEEE Transactions on Automatic Control, In Press, 2019.
In Press, 2018
V. Puzyrev, Calo, V., and Torres-Verdin, C., “Interpretation of deep directional resistivity measurements acquired in high-angle and horizontal wells using 3D inversion,” Geophysical Journal International, In Press, 2018.
J. D. Escobar and Torres-Verdin, C., “Permeability sensitivity functions and rapid simulation of hydraulic testing measurements using perturbation theory,” Water Resources Research, In Press, 2018.
In Press, 2019
J. Jeong, Meng, X., Rockwell, A. K., Bank, S. R., Hsieh, W. - P., Lin, J. - F., and Wang, Y., “Picosecond Transient Thermoreflectance for Thermal Conductivity Characterization,” Nanoscale and Microscale Thermophysical Engineering, In Press, 2019. Publisher's Version
Z. Zhao, Li, X., He, F., Wei, X., Lin, S., and Xie, C., “Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays,” Journal of Neural Engineering, 2019. Publisher's VersionAbstract
Abstract Objective. Implanted microelectrodes provide a unique means to directly interface with the nervous system, but have been limited by the lack of stable functionality. There is growing evidence suggesting that substantially reducing the mechanical rigidity of neural electrodes promotes tissue compatibility and improves their recording stability in both short- and long-terms. However, the miniaturized dimensions and ultraflexibility desired for mitigating tissue responses preclude the probe’s self-supported penetration into the brain tissue. Approach. Here we demonstrate the high-throughput implantation of multi-shank ultraflexible neural electrode arrays with surgical footprints as small as 200 µm2 in a mouse model. This is achieved by using arrays of tungsten microwires as shuttle devices, and bio-dissolvable adhesive polyethylene glycol (PEG) to temporarily attach a shank onto each microwire. Main results. We show the ability to simultaneously deliver electrode arrays in designed patterns, to adjust the implantation locations of the shanks by need, to target different brain structures, and to control the surgical injury by reducing the microwire diameters to the cellular scale. Significance. These results provide a facile implantation method to apply ultraflexible neural probes in scalable neural recording.
E. Fleming, Du, F., Ou, E., Dai, L., and Shi, L., “Thermal conductivity of carbon nanotubes grown by catalyst-free chemical vapor deposition in nanopores,” Carbon, 2019. Publisher's VersionAbstract
A graphitic structure was synthesized by catalyst-free chemical vapor deposition on anodized aluminum oxide (AAO) templates using acetylene as the carbon source at a temperature of 620 °C. The AAO template was removed by chemical etching, which yielded a three-dimensional structure featuring planar layers seamlessly joined together by nanotube pillars via continuous carbon-carbon bonding. Raman and transmission electron spectroscopy measurements reveal that the deposited carbon is nanocrystalline graphite with a thickness of about 10 nm. Carbon nanotubes were isolated from the three-dimensional nano-pillar graphitic structure and measured with a thermal four-probe method to obtain the intrinsic thermal conductance. Discrete modulated heating and Fourier transform analysis were used to improve the signal to noise ratio of the thermal measurement of the low-conductance nanostructure. The measured thermal conductivity of the nanotube wall increased with increasing temperature and was 3.9 ± 0.3 Wm−1K−1 at room temperature. Both the temperature dependence and the magnitude are consistent with the nanocrystalline graphitic structure.
K. Chen, Roy, A., Rai, A., Movva, H. C. P., Meng, X., He, F., Banerjee, S. K., and Wang, Y., “Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides,” APL Materials, vol. 6, pp. 056103, 2018. Publisher's VersionAbstract
Defect-carrier interaction in transition metal dichalcogenides (TMDs) plays important roles in carrier relaxation dynamics and carrier transport, which determines the per- formance of electronic devices. With femtosecond laser time-resolved spectroscopy, we investigated the effect of grain boundary/edge defects on the ultrafast dynamics of photoexcited carrier in molecular beam epitaxy (MBE)-grown MoTe2 and MoSe2. We found that, comparing with exfoliated samples, the carrier recombination rate in MBE- grown samples accelerates by about 50 times. We attribute this striking difference to the existence of abundant grain boundary/edge defects in MBE-grown samples, which can serve as effective recombination centers for the photoexcited carriers. We also observed coherent acoustic phonons in both exfoliated and MBE-grown MoTe2, indi- cating strong electron-phonon coupling in this materials. Our measured sound velocity agrees well with the previously reported result of theoretical calculation. Our findings provide a useful reference for the fundamental parameters: carrier lifetime and sound velocity and reveal the undiscovered carrier recombination effect of grain boundary/edge defects, both of which will facilitate the defect engineering in TMD materials for high speed opto-electronics.
PDF icon PDF
C. E. Tinney, Panickar, P., and Vogel, P., “Aeroacoustics of a Planar Multistream Supersonic Nozzle with Aft Deck and Sidewalls,” AIAA Journal, pp. 1-12, 2018.Abstract
The exhaust plume produced by a planar, multistream supersonic nozzle is studied with and without the effect of an aft deck and sidewalls. Measurements encompass static wall pressure of the internal flow, shadowgraphy images of the exhaust plume, and far-field acoustics for a range of pressure ratios. An experimentally validated Reynolds averaged Navier–Stokes model of the internal flow is then used to reveal how the aft deck and sidewalls allow the expanding gas to persist longer, thereby extending the location of the separation shock. Where the far-field sound is concerned, the aft deck and sidewall attachments cause a noticeable reduction in overall sound pressure levels by as much as 5 dB at shallow angles and sideline observer positions. Many of the tones associated with screech and broadband shock associated noise are also absent with the addition of the aft deck and sidewalls.