Publications by Type: Journal Article

Submitted
J. K. Bean, Bilotto, A., and Hildebrandt Ruiz, L., “Formation of Particulate Matter from the Oxidation of Evaporated Hydraulic Fracturing Wastewater,” Environmental Science & Technology, Submitted.
T. Bui-Thanh, “From Rankine-Hugoniot Condition to a Constructive Derivation of HDG Methods,” Lecture Notes in Computational Science and Engineering, Submitted.
C. Faxon, Dhulipala, S. V., Allen, D. T., and Hildebrandt Ruiz, L., “Heterogeneous Production of Cl2 from Particulate Chloride Measured in Environmental Chamber Experiments,” American Institute of Chemical Engineers Journal, Submitted.
A. I. Z. Jarrah, Bard, J. F., and deSilva, A. H., “A Heuristic for Machine Scheduling at General Mail Facilities (1992),” European Journal of Operational Research, vol. 63, Submitted.
T. Bui-Thanh, “Hybridized Discontinuous Galerkin Methods for Linearized Shallow Water Equations,” Submitted.
R. E. F. E. R. E. E. D. J. O. U. R. N. A. L. A. R. T. I. C. L. E. S. Boden, D., M. N., D., L., and Borrego, M., “(in press),” Leave your discipline at the door: {Matching} expectations for interdisciplinary collaboration among faculty members. {Higher} {Education} in {Review}, vol. 11., Submitted.
M. Alley, Schreiber, M., Diesel, E., Ramsdell, K., and Borrego, M., “

(2007) Increased student learning and attendance in resources geology through the combination of sentence-headline slides and active learning measures.

,” Journal of Geoscience Education, vol. 55, pp. 85–91, Submitted.
T. Bui-Thanh and Myers, A., “A Randomized Misfit Approach for Data Reduction in Large-Scale Inverse Problems,” SIAM Special Edition, Submitted.
Y. Deng and Bard, J. F., “A Reactive GRASP with Path Relinking for Capacitated Clustering,” Journal of Heuristics, vol. 17, pp. 119–152, Submitted.
A. I. Z. Jarrah, Bard, J. F., and deSilva, A. H., “Solving Large-Scale Tour Scheduling Problems (1994),” Management Science, vol. 40, pp. 1124–1144, Submitted.
J. F. Bard, Binici, C., and deSilva, A. H., “Staff Scheduling at the United States Postal Service. ,” Computers & Operations Research, vol. 30, pp. 745–771, Submitted.
In Press, 2018
J.Duenas, J.Sulzer,, P.Stämpfli,, Hepp-Reymond, M. C., S.Kollias,, E.Seifritz,, and R.Gassert,BOLD signal in sensorimotor regions reveals differential encoding of passive forefinger movement direction, velocity and displacement,” NeuroImage, In Press, 2018.
In Press
H. Daigle and Dugan, B., “Data report: permeability, consolidation, stress state, and pore system characteristics of sediments from Sites C0011, C0012, and C0018 of the Nankai accretionary complex,” Proceedings of the Integrated Ocean Drilling Program, Scientific Reports, In Press.
In Press, 2018
J. Jeong, Chen, K., Walker, E. S., Roy, N., He, F., Liu, P., Willson, G. C., Cullinan, M., Bank, S. R., and Wang, Y., “In-plane thermal conductivity measurement with nanosecond grating imaging tehchnique,” Nanoscale and Microscale Thermophyical Engineering, In Press, 2018. Publisher's VersionAbstract
We develop a nanosecond grating imaging (NGI) technique to measure in-plane thermal transport properties in bulk and thin-film samples. Based on nanosecond time-domain thermoreflectance (ns-TDTR), NGI incorporates a photomask with periodic metal strips patterned on a transparent dielectric substrate to generate grating images of pump and probe lasers on the sample surface, which induces heat conduction along both cross- and in-plane directions. Analytical and numerical models have been developed to extract thermal conductivities in both bulk and thin-film samples from NGI measurements. This newly developed technique is used to determine thickness-dependent in-plane thermal conductivities (κx) in Cu nano-films, which agree well with the electron thermal conductivity values converted from four-point electrical conductivity measurements using the Wiedemamn–Franz law, as well as previously reported experimental values. The κx measured with NGI in an 8 nm x 8 nm GaAs/AlAs superlattice (SL) is about 10.2 W/m⋅K, larger than the cross-plane thermal conductivity (8.8 W/m⋅K), indicating the anisotropic thermal transport in the SL structure. The uncertainty of the measured κx is about 25% in the Cu film and less than 5% in SL. Sensitivity analysis suggests that, with the careful selection of proper substrate and interface resistance, the uncertainty of κx in Cu nano-films can be as low as 5%, showing the potential of the NGI technique to determine κx in thin films with improved accuracy. By simply installing a photomask into ns-TDTR, NGI provides a convenient, fast, and cost-effective method to measure the in-plane thermal conductivities in a wide range of structures and materials.
PDF icon PDF
V. Puzyrev, Calo, V., and Torres-Verdin, C., “Interpretation of deep directional resistivity measurements acquired in high-angle and horizontal wells using 3D inversion,” Geophysical Journal International, In Press, 2018.
J. D. Escobar and Torres-Verdin, C., “Permeability sensitivity functions and rapid simulation of hydraulic testing measurements using perturbation theory,” Water Resources Research, In Press, 2018.
2018
C. Lu, Jing, Z., Wu, C., Piquemal, J. - P., Ponder, J. W., Ren, P., and others,AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids,” J Chem Theory Comp, vol. in press, 2018. Publisher's Version
K. Chen, Roy, A., Rai, A., Valsaraj, A., Meng, X., He, F., Xu, X., Register, L. F., Banerjee, S., and Wang, Y., “Carrier Trapping by Oxygen Impurities in Molybdenum Diselenide,” ACS Applied Materials & Interfaces, vol. 10, no. 1, pp. 1125–1131, 2018. Publisher's VersionAbstract
Understanding defect effect on carrier dynamics is essential for both fundamental physics and potential applications of transition metal dichalcogenides (TMDs). Here, the phenomenon of oxygen impurities trapping photoexcited carriers has been studied with ultrafast pump-probe spectroscopy. Oxygen impurities are intentionally created in exfoliated multilayer MoSe2 with Ar+plasma irradiation and air exposure. After plasma treatment, the signal of transient absorption first increases and then decreases, which is a signature of defect-capturing carriers. With larger density of oxygen defects, the trapping effect becomes more prominent. The trapping defect densities are estimated from the transient absorption signal, and its increasing trend in the longer-irradiated sample agrees with the results from X-ray photoelectron spectroscopy. First-principle calculations with density functional theory reveal that oxygen atoms occupying Mo vacancies create mid-gap defect states, which are responsible for carrier trapping. Our findings shed light on the important role of oxygen defects as carrier trappers in TMDs, and facilitate defect engineering in relevant materials and device applications.
PDF icon PDF
J. Kim, Fleming, E., Zhou, Y., and Shi, L., “Comparison of four-probe thermal and thermoelectric transport measurements of thin films and nanostructures with microfabricated electro-thermal transducers,” Journal of Physics D: Applied Physics, vol. 51, pp. 103002, 2018. Publisher's Version
N. K. Roy, Dibua, O. G., Jou, W., He, F., Jeong, J., Wang, Y., and Cullinan, M., “A comprehensive study of the sintering of copper nanoparticles using femtosecond, nanosecond and continuous wave lasers,” Journal of Micro and Nano-Manufacturing, vol. 6, no. 1, pp. 010903, 2018. Publisher's VersionAbstract
A high electrical and thermal conductivity coupled with low costs make copper (Cu) an enticing alternative to aluminum for fabrication of interconnects in packaging applications. To tap into the benefits of the ever-reducing size of transistors, it is required to increase the input/output (I/O) pin count on electronic chips and thus minimize the size of chip to board interconnects. Laser sintering of Cu nanoparticle (NP) inks can serve as a promising process for developing these micron sized, 3D interconnect structures. However, the exact processing windows for Cu NP sintering are not well known. Therefore, this paper presents an extensive experimental investigation of the sintering processing window with different lasers including femtosecond (fs), nanosecond (ns) and continuous-wave (CW) lasers. The dependence of the processing window on Cu layer thicknesses and laser exposure durations has also been investigated. A simplified model to estimate optimum laser sintering windows for Cu NPs using pulsed lasers is presented and the predicted estimates are compared against the experimental results. Given the simplicity of the model, it is shown to provide good estimates for fluence required for the onset of sintering and the processing window for good sintering of Cu NPs.

Pages