High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants


S. Alzobaidi, Da, C., Tran, V., Prodanović, M., and Johnston, K. P., “High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants,” Journal of Colloid and Interface Science, vol. 488, pp. 79-91, 2017.


Ultralow water content carbon dioxide-in-water (C/W) foams with gas phase volume fractions (ϕ) above 0.95 (that is <0.05 water) tend to be inherently unstable given that the large capillary pressures that cause the lamellar films to thin. Herein, we demonstrate that these C/W foams may be stabilized with viscoelastic aqueous phases formed with a single zwitterionic surfactant at a concentration of only 1% (w/v) in DI water and over a wide range of salinity. Moreover, they are stable with a foam quality ϕ up to 0.98 even for temperatures up to 120 °C. The properties of aqueous viscoelastic solutions and foams containing these solutions are examined for a series of zwitterionic amidopropylcarbobetaines, R-ONHC3H6N(CH3)2CH2CO2, where R is varied from C1214 (coco) to C18 (oleyl) to C22 (erucyl). For the surfactants with long C18 and C22 tails, the relaxation times from complex rheology indicate the presence of viscoelastic wormlike micelles over a wide range in salinity and pH, given the high surfactant packing fraction. The apparent viscosities of these ultralow water content foams reached more than 120 cP with stabilities more than 30-fold over those for foams formed with the non-viscoelastic C1214 surfactant. At 90 °C, the foam morphology was composed of ∼35 μm diameter bubbles with a polyhedral texture. The apparent foam viscosity typically increased with ϕ and then dropped at ϕ values higher than 0.95–0.98. The Ostwald ripening rate was slower for foams with viscoelastic versus non-viscoelastic lamellae as shown by optical microscopy, as a consequence of slower lamellar drainage rates. The ability to achieve high stabilities for ultralow water content C/W foams over a wide temperature range is of interest in various technologies including polymer and materials science, CO2 enhanced oil recovery, CO2 sequestration (by greater control of the CO2flow patterns), and possibly even hydraulic fracturing with minimal use of water to reduce the requirements for wastewater disposal.


Publisher's Version